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A charge carrier in the channel of an organic field-effect transistor �OFET� is coupled to the electric
polarization of the gate in the form of a surface Fröhlich polaron �N. Kirova and M. N. Bussac, Phys. Rev. B
68, 235312 �2003��. We study the effects of the dynamical field of polarization on both small-polaron hopping
and trap-limited transport mechanisms. We present numerical calculations of polarization energies, band-
narrowing effects due to polarization, hopping barriers, and interface trap depths in pentacene and rubrene
transistors as functions of the dielectric constant of the gate insulator and demonstrate that a trap-and-release
mechanism more appropriately describes transport in high-mobility OFETs. For mobilities on the order
0.1 cm2 /V s and below, all states are highly localized and hopping becomes the predominant mechanism.
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I. INTRODUCTION

Charge transport in single-crystal organic semiconductors
is a difficult problem and many different models have been
used to approach it.1–5 For all of these models, the starting
point are the transfer integrals acting in the crystal plane. The
largest transfer integral J, which determines the bandwidth,
is on the order of 100 meV. In addition to the fact that these
systems have narrow bands, organic semiconductors are built
with highly polarizable molecules and are subject to signifi-
cant electron-phonon interactions. The carriers in organic
semiconductors are therefore dressed with a lattice displace-
ment cloud and an electrical polarization cloud.6–9 In particu-
lar, recent scanning tunneling microscopy observations of
site-specific polarization energies8 give direct evidence of
these electric polarization effects. Short-range lattice fluctua-
tions and long-range polarization fluctuations must therefore
be considered in transport models.10 At room temperature,
these fluctuations cause the dynamical localization of
carriers,4,11 which is reflected in the different power law de-
pendence of the mobility versus temperature,12,13 and versus
transfer integral.4 The weak localization length L determined
by the transfer matrix method in two dimensions4 typically
varies from 50 lattice distances to 2 lattice distances for en-
ergetic disorder varying from 0.3J to 2J.

Here we are interested in conduction processes that take
place in the channel of an organic field-effect transistor built
on an oxide or a polymer gate. Measurements of the charge
carrier mobility in organic field-effect transistors �OFETs�
are strongly dependent on the dielectric constant of the gate
insulator.9,14 These findings emphasize the importance of the
coupling of the charge to the polarization of the nearby gate
dielectric material.15,16 In order to explain these results, we
study the effects on the transport of the coupling of the car-
rier to the surface phonon modes of the gate insulator
through its dielectric permittivity ����. This situation is well
described by a Fröhlich surface polaron Hamiltonian. De-
pending on the distance of the carrier to the gate interface
and the nature of the dielectric, the coupling is either
strong15,17 or weak to moderate.16 In the strong-coupling
limit, the charge tends to form a small polaron,17 whereas the

carrier is less localized in the moderate coupling regime.16

In this paper, we discuss both trap-limited and small-
polaron hopping transport mechanisms in the channel of an
organic transistor close to gate interface. We present numeri-
cal calculations of these effects using pentacene and rubrene
as model materials. For this purpose we numerically calcu-
late the Coulomb polarization energy for free and localized
or trapped states.18 From these we deduce the activation en-
ergies for small-polaron hopping and for the trap-and-release
process.

II. POLARIZATION ENERGY

A charge carrier in the bulk of an organic semiconductor
polarizes the surrounding molecules and forms an electronic
or Coulomb polaron6,19 �see Fig. 1�. For a carrier in the chan-
nel of an OFET �see Fig. 2�, the charge polarizes the gate
insulator in addition to the organic semiconductor. In both
cases, the polarization energies Ep are on the order of 1 eV
�see Table I�.

Although Ep is large, Coulomb polaron formation is not,
per se, an obstacle to charge propagation in the bulk of an
organic semiconductor crystal. This is due to the fact that the
polarization field induced by the charge establishes much
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FIG. 1. �Color online� Coulomb polaron in bulk rubrene. The
carrier is located at the origin in the z=0 high-mobility plane �a ,b�.
The interlayer spacing is 13.4 Å.
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faster than the time h /J required for its transfer to a neigh-
boring molecular site, which is coupled to the initial site by a
transfer integral J on the order of 100 meV. Thus the Bloch
wave that forms in an organic solid is not that of a bare
carrier but rather that of a carrier dressed with a cloud of
electric polarization. Polarization effects do influence charge
transport, however, since this coupling of the polarization
field to the carrier in a Coulomb polaron leads to a larger
effective mass16 �see Tables III and IV�.

Accurate calculations of the polarization energy are not
straight forward because they involve long-range Coulomb
potential contributions. The energy can, however, be calcu-
lated using a combination of numerical and analytical tech-
niques that we have developed4,16,18 as extensions to the self-
consistent polarization field method.6,20 One of two
contributions to the polarization energy is calculated numeri-
cally, explicitly taking into account the anisotropy of the or-
ganic semiconductor polarizability and the dipole-dipole in-
teractions in a cluster of molecules. The second contribution,
which accounts for less than 10% of the total polarization
energy, is analytically evaluated in the remaining region out-
side the cluster. An accurate result is achieved via a calibra-
tion procedure that ensures the polarization energy is inde-
pendent of the size of the cluster for larger clusters. A more
in-depth description of the calculation including details of

the calibration procedure and tables of the parameters used in
this work are given in Appendix A.

III. CARRIER EFFECTIVE MASS EFFECTS AND
COUPLING TO THE GATE INTERFACE

As a means of organizing the theoretical framework re-
quired to understand charge transport in high-mobility
OFETs, it is instructive to discuss the timescales involved for
each of the relevant charge interactions. A useful point of
reference is the characteristic time it takes for Bloch-wave
formation h /J, where J is the intermolecular charge transfer
integral. The important interactions that occur on a timescale
that is faster than Bloch-wave formation have the effect of
reducing the effective transfer integral J�, i.e. increasing the
effective mass of the carrier m��1 /J�. The two fast interac-
tions that are relevant in the bulk of an organic semiconduc-
tor are molecular electric polarization and the coupling of the
charge with high-frequency intramolecular phonon modes.16

Slow interactions, on the other hand, act on the Bloch wave
directly with the effect of localizing the charge. When local-
ization effects are weak, as in the case of thermal fluctua-
tions, the mobility is a power-law function of the renormal-
ized transfer integral,4

�0 � �J��n, �1�

where �0 is the mobility in the absence of traps and the
exponent n is a material-specific value that can be deduced
from temperature-dependent mobility data.4 When self-
trapping effects are strong, transport is interpreted in terms of
small-polaron hopping.17

A. Polarization in the crystal bulk

The reduction in the transfer integral due to molecular
polarization effects can be calculated by comparing the di-
pole fields surrounding a charge before and after propagation
between two neighboring molecular sites n and n+h.18 The
dipoles induced by the charge are determined using the self-
consistent polarization field method discussed in Sec. II and
Appendix A. The reduction factor �p is defined as

�p = exp�− S0� , �2�

where

S0�h� =
1

2�
k

�
i=1

3

�Xi,k�n� − Xi,k�n + h��2, �3�

Xi,k =
di,k

2�e�i,kk

, �4�

di,k and �i,kk are the components of the induced dipole mo-
ment and polarizability tensor in the crystal basis of the or-
ganic molecule with index i, and e is the energy difference
between the ground and first excited states of the neutral
molecule.16,18 The resulting factor by which the effective
mass is increased due to molecular polarization effects �p

−1 is
1.27 in bulk pentacene and 1.12 in bulk rubrene.
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FIG. 2. �Color online� Induced cloud of polarization due to a
hole in rubrene at z=6.7 Å close to a Ta2O5 interface at z=0. The
induced dipoles in the oxide �z�0� are magnified by a factor of 5
relative to those in rubrene �z�0� for clarity.

TABLE I. Electronic polarization energies in eV of a hole in
rubrene and pentacene for the bulk case and in the organic semi-
conductor monolayer next to the semiconductor-insulator interface
for common OFET gate insulators. The channel is 6.7 and 6.6 Å
from the dielectric interface in rubrene and pentacene, respectively.

Rubrene Pentacene

Bulk −0.834 −1.546

Vacuum −0.776 −1.496

Parylene N −0.860 −1.560

Parylene C −0.863 −1.562

SiO2 −0.842 −1.548

Al2O3 −0.873 −1.569

Ta2O5 −0.901 −1.589
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The coupling between the charge and the high-frequency
intramolecular modes with frequencies 	�0 that are larger
than J /h gives rise to a narrowing of the effective bandwidth
4J� by a factor of

�m = exp�− Em/	�0� , �5�

where Em is the electron-phonon binding energy, i.e., 1/2 the
reorganization energy of the molecule. The most significant
contributions come from the 1343 and 1597 cm−1 vibra-
tional modes in rubrene25 and the 1441 and 1560 cm−1

modes in pentacene.26,27 This gives rise to band narrowing in
rubrene that is similar to the acenes. In both rubrene and
pentacene the effective bandwidth is reduced by a factor of
0.75.

B. Polarization near a dielectric interface

In typical OFETs such as those based on rubrene and the
acenes, the conductive channel is located in the organic
semiconductor in proximity to the interface with the dielec-
tric material. The presence of this interface gives rise to a
coupling of the charge with the polarization of the dielectric
material15 and results in the formation of surface Fröhlich
polarons. The coupling parameter � is related to the infrared-
active surface phonon modes of the dielectric material with
frequency 	�s and to the dielectric discontinuities at the in-
terface in the following way:16

� =
q2

8
�0��a�	�sJ�
, �6�

where

1

��
=

�r − ��

�r��r + ���
−

�r − �s

�r��r + �s�
, �7�

a in this case is the distance between two neighboring sites
along the direction of charge propagation, �r is the effective
dielectric constant of the organic semiconductor �Table V�,
�s and �� are the static and dynamic dielectric constants of
the gate insulator �Table II�, and J�=�p�mJ is the effective
transfer integral including polarization and intramolecular-
phonon effects.

Values of the surface phonon frequency �s= ��L
2 +�T

2� /2,
where �L and �T are the frequencies of the longitudinal and
transverse optical phonons of the bulk oxide,28 are given in
Table II. The values of the coupling constants � are given in
Tables III and IV. For a rubrene /Ta2O5 interface �=4.06, the
relevant surface phonon energy is 	�s=48.5 meV, and the
renormalized transfer integral is J�=58 meV.

C. Strong coupling limit and small-polaron hopping

By using a method introduced by Pekar and Landau,29,30

Kirova and Bussac presented a calculation for the surface
Fröhlich polaron in the strong adiabatic coupling limit ap-
plied to the channel of an OFET. Similar results were
used by Fratini et al. to justify the existence of small
polarons in the channel of single-crystal rubrene
transistors14,17,31,32 that exhibited room-temperature mobili-

ties as high as 20 cm2 /V s. Their model32 was used to inter-
pret the dependence of the mobility on both the temperature
and the dielectric constant of the gate.14

D. Moderate coupling limit and the effective mass of the
surface Fröhlich polaron

A careful study of the parameters that determine the exis-
tence of the surface Fröhlich polarons in rubrene transistors
shows that 	�s /J��1 and 	�s /kBT�2 at room temperature,
and that the characteristic distance of the channel to the gate
interface z /a�1. All of these values being on the order of
one, the surface Fröhlich polaron cannot be consistently
treated in either the strong or the weak coupling limit. This
led to the introduction of a moderate coupling limit for po-
laron calculations in Ref. 16 �Appendix D� based on the
ideas of Lee, Low, and Pines.33 Here in Appendix B we
reformulate this problem in a slightly simplified way where
each molecule has no extension and can be considered sim-
ply a lattice node. The results compared to those in Ref. 16,
where the extension of the molecules was considered, are the
same within a few percent. In the moderate coupling limit,
the polaron is large and its main effect is to increase the
effective mass of the carrier.

The factor �s by which the effective transfer integral de-
creases due to surface polaron effects is determined via16

1

�s
= 1 + 2��

0


�J�/	�s y2

�1 + y2�3exp	−
2yz

a
�	�s

J�

dy .

�8�

The reduction factors and effective transfer integrals in the
bulk and for various OFET interfaces for rubrene and penta-

TABLE II. Dielectric material parameters used in the model and
literature values for rubrene OFET mobilities � for various gate
insulators. The values of the static �s and dynamic �� dielectric
constants of the gate insulator were obtained from the same refer-
ence as the mobility data except for �� for parylene C, which was
determined from Ref. 21. Values of the effective static �s and dy-
namic �� polarizabilities were calibrated using the procedure out-
lined in Sec. IV B of the text. Surface phonon frequencies �s for
each dielectric material obtained and transverse and longitudinal
phonon frequencies from the literature are also given.

�s

�s

�Å3� ��

��

�Å3�
�s

�cm−1�
�

�cm2 /V s�

Vacuum 1 0 1 0 15–20b

Parylene N 2.9 4.21 2.56 3.74 500b 8–12b

Parylene C 3.15 4.53 2.65c 3.87 500b 6–10a

SiO2 3.9 5.27 2.1 2.93 480d 4–7b

Al2O3 9.4 7.68 3 4.34 386e 2–4b

Ta2O5 25 9.04 4.4 5.67 390f 1–1.5b

aReference 9.
bReference 14.
cReference 21.
dReference 22.
eReference 23.
fReference 24.
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cene are given in Tables III and IV. Values of J�=�sJ� are
based on calculations25,34 of the bare transfer integral J in the
absence of polarization and electron-phonon coupling ef-
fects.

IV. CHARGE TRANSPORT IN THE OFET CHANNEL

The models used to describe transport in the channel of an
OFET typically involve either a trap-and-release
mechanism35,36 or small-polaron hopping.17,31,32 We now ex-
amine both models in a manner that includes the effects of
polarization discussed in the previous sections.

A. Polarization effects on small-polaron hopping

In a series of recent papers17,31,32 charge transport in the
channel of single-crystal organic field-effect transistors was
attributed to small-polaron hopping and charge mobilities as
high as 20 cm2 /V s were explained by invoking this
mechanism.17 The energy barrier � for small-polaron hop-
ping was obtained by a fit of a standard hopping relation to
experimental data, and the results were compared to a stan-

dard analytical hopping model. We now develop a numerical
approach to get the value of the hopping barrier directly.

Textbook relations giving the mobility of small polarons
usually derive from the Holstein’s molecular-crystal
model37,38 or the Marcus theory of charge transfer.39,40 We
shall apply these models to the current problem of a polaron
that occupies a molecule immersed in an electrically polar-
izable medium by making necessary corrections to the hop-
ping frequency to account for long-range effects. For this
small-polaron hopping model we consider a cluster of two
adjacent hopping sites in proximity to the organic-dielectric
interface of the transistor and therefore embedded in a het-
erogeneous electrically polarizable medium composed of the
dielectric and the organic semiconductor. A single small po-
laron is on one of these two sites in the initial state and the
hopping of the polaron occurs via a thermally assisted tran-
sition that is induced by thermal fluctuations of frequency 
.

When the temperature is high enough for atomic motion
to be treated classically �kBT�h
 /3� the hopping rate be-
comes a thermally activated process. The polaron can make
the hop in the presence of thermal fluctuations when the
energies of the initial and final electronic states are coinci-
dent. The hopping activation energy is the minimum energy

TABLE III. Rubrene carrier bandwidth reduction factors due to molecular polarization �p, intramolecular
charge vibration �m, and surface phonon coupling �s, resulting electron-phonon coupling constant �, renor-
malized transfer integral J�=�p�m�sJ based on a reported25 calculation of the bare transfer integral J
=85 meV, calculated trap depth Et of an interface defect with a dipole moment of 3.0 D, and mobility �
estimated using the model with an interface trap density of 1.8�1012 cm−2.

�p �m � �s

J�

�meV�
Et

�meV�
�

�cm2 /V s�

Rubrene bulk 0.8893 0.75 1 56.69

Rubrene/vacuum 0.8881 0.75 1 56.62 17.5

Rubrene/parylene N 0.8904 0.75 0.4015 0.9714 55.14 72.08 14.7

Rubrene/parylene C 0.8905 0.75 0.5551 0.9609 54.55 94.57 12.2

Rubrene /SiO2 0.8900 0.75 2.016 0.8684 49.27 125.4 6.50

Rubrene /Al2O3 0.8907 0.75 3.640 0.7618 43.26 162.2 1.94

Rubrene /Ta2O5 0.8914 0.75 4.059 0.7425 42.19 168.4 1.52

TABLE IV. Pentacene carrier bandwidth reduction factors due to molecular polarization �p, intramolecu-
lar charge vibration �m, and surface phonon coupling �s, resulting electron-phonon coupling constant �,
renormalized transfer integral J�=�p�m�sJ based on a reported34 calculation of the bare transfer integral J
=97.8 meV, calculated trap depth Et of an interface defect with a dipole moment of 3.0 D, and mobility
reduction factor � /�0 due to trapping effects estimated using the model with an interface trap density of
1.8�1012 cm−2.

�p �m � �s

J�

�meV�
Et

�meV� � /�0

Pentacene bulk 0.7865 0.75 1 57.69

Pentacene/vacuum 0.7781 0.75 1 57.07 1

Pentacene/parylene N 0.7800 0.75 0.4012 0.9812 56.14 121.1 0.4764

Pentacene/parylene C 0.7801 0.75 0.5598 0.9740 55.73 124.9 0.4353

Pentacene /SiO2 0.7797 0.75 2.030 0.9092 52.00 158.7 0.1550

Pentacene /Al2O3 0.7803 0.75 4.003 0.8123 46.49 190.7 0.0426

Pentacene /Ta2O5 0.7808 0.75 4.799 0.7843 44.92 201.4 0.0272
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required to achieve such a coincidence configuration.37 This
semiclassical hopping model is adiabatic if the lifetime h /J
of the coincidence state �or charge transfer state� is shorter
than the characteristic time 1 /
 of the fluctuation inducing
the hop, or h
�J. Note that in the present case in which the
carrier can be described as a Fröhlich polaron, the coinci-
dence is mediated by long-range polarization effects.

The dielectric response of the bound charges in the oxide
affects the hopping rate between two sites situated at the gate
interface. This effect can be understood qualitatively by
separating the polarizability of the oxide into two compo-
nents: a fast electronic component related to the dielectric
response �� and a slow component for frequencies lower
than J /h related to atomic motions in the dielectric response
��=�s−��. The fast component of the induced dipole field
does not contribute to the hopping barrier since, as we em-
phasized in Sec. II, the time scales related to electronic re-
distribution both in the oxide and in the organic semiconduc-
tor in this case are much shorter than any other time scale of
the interactions involved. This fast component increases the
effective mass of the carrier when it tunnels across the bar-
rier. This is accounted for by replacing the bare transfer in-
tegral J by its renormalized value J� �see Sec. III�.

There are two ways to envisage small polaron hopping in
a cluster embedded in an electrically polarizable medium:
the Holstein molecular model and the Marcus charge-transfer
model, which, in this case, are not equivalent. In the view
resulting from Emin-Holstein hopping theory, the slow di-
poles of the oxide, which are at the origin of the surface
polaron, are also responsible for the coincidence configura-
tion and the hopping. In this case, the semiclassical calcula-
tion in the continuous limit has been reviewed by Fratini et
al. in Ref. 31. The hopping barrier is

� = �Esp − t�, �9�

where �Esp=Esp�1�−Esp�2� and Esp�1� and Esp�2� are the sur-
face polaron energies of the small-polaron and coincidence
states, respectively.41 The surface polaron energy is the sum
of the polarization energy and the interaction energy between
the charge and the induced dipoles. In the continuous limit it
is equal to the interaction energy between the carrier and its
image charge,28

Esp =
q2

8
�0

�

z
, �10�

where �=1 /2�� is defined in Eq. �7� and

� =
1

2	1 −
z

�z2 + a2
 . �11�

Here t� takes a value on the order of J�.
In the case of the rubrene /Ta2O5 interface �=0.099, z

=6.7 Å, a=7.2 Å, the polaron binding energy Esp
=107 meV, and �=0.16. Based on these parameters, the
hopping barrier �=17 meV− t� is small. We know from Ref.
16 that there are significant differences between the discrete
image force and the continuous one. Since this model is con-
tinuous and based on a classical image force dependence at
the interface, we have computed the discrete equivalent.

Our discrete results for the rubrene /Al2O3 interface yield
a polaron formation energy of 71 meV and a polaron hop-
ping barrier of only 5 meV. Both the continuous and discrete
results are very different from the fits of Fratini et al. to the
experimental data that give �=55 meV for the
rubrene /Ta2O5 interface and �=47 meV for the
rubrene /Al2O3 interface. Taking a channel closer to the in-
terface �z=3 Å instead of z=6.7 Å� will not increase the
activation energy sufficiently ��=32 meV− t� instead of �
=17 meV− t��.

If we refer to the Marcus theory of charge transfer in a
polarizable medium,39,40 we can find a different way to cal-
culate the activation energy �. This view is applicable when
the charge is not only coupled to the slow dipoles of the
oxide, but also to the other degrees of freedom that ensure
coincidence. The polaron is built by the coupling of the car-
rier with the slow dipoles of the oxide and the coincidence
results from other molecular fluctuations.

Immediately after the carrier makes the transition from
the ground state to the coincidence state, the slow dipoles
that were induced in the long-lived ground state due to the
slow dielectric response �� have had no time to reorganize.
The field of the carrier involved in the hop changes from the
field of a point charge to the field of a charge split between
two sites. Thus the charge transfer or small-polaron hopping
barrier is written:

�E =
q

4
�0
�

i
�1

2
	 xi − a

�xi − a�3
+

xi

�xi�3

 −

xi

�xi�3

 · di���� ,

�12�

where 0 and a are the locations of the two hopping sites, q is
the charge of the carrier, and di���� are the dipoles induced
on site i by the hopping carrier on the site at 0 due to the
slow response. Equation �12� reflects the point emphasized
by Marcus39,40 that only a non-equilibrium dipole distribu-
tion �such as di����� can influence hopping.

We used the numerical procedure discussed in Appendix
A to calculate the dipole field di����, which depends on the
details of the geometry and dielectric response, for rubrene
and pentacene transistors with various gate dielectrics. The
corresponding small-polaron hopping barriers associated
with these devices are plotted in Fig. 3 as a function of the
static dielectric constant of the gate insulator. In a rubrene
transistor with a Ta2O5 oxide gate, we find a hopping barrier
of 12.4 meV. As in the continuous and discrete calculations
above that we determined using the Holstein framework, this
value is also much lower than the hopping barrier of 55 meV
found by Fratini et al.14,17,31,32

In conclusion, the three different models that we used to
describe small-polaron hopping �“continuous Holstein,”
“discrete Holstein,” and “discrete Marcus” models� do not
agree with the experimental results obtained in single-crystal
rubrene OFETs. In all three cases, the hopping barriers are
too small compared to kBT and also too small with respect to
the measured values. This suggests that the Fröhlich surface
polaron is not a small polaron and favors the model pre-
sented in Appendix B �moderate coupling limit�. This also
motivates the study of transport processes other than hopping
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that are more sensitive to the value of the dielectric constant
of the gate such as the trap-and-release model described in
the following section.

B. Polarization effects on trap-limited transport

Treatments of the dielectric surface, such as plasma treat-
ments or applications of self-assembled monolayers, prior to
deposition of the organic semiconductor can greatly affect
OFET performance.42–44 This can be attributed to the diffi-
culty in creating a dielectric surface that is free of electroac-
tive defects. A “pristine” SiO2 surface, for example, contains
high concentrations of natural defects, peroxide bridges, free
radicals, OH groups, and nonbridging oxygen centers, re-
gardless of the steps taken to reduce their numbers.45–47

These defects are expected to have or lead to dipole moments
on the order of a few debye48,49 that give rise to transport
traps for carriers in the nearby channel of the transistor. This
is consistent with interface trap density measurements that
are between 1 and 3�1012 cm−2 in single-crystal
rubrene-SiO2 transistors,50 two orders of magnitude higher
than at the rubrene-vacuum interface in an air-gap
transistor.35

As discussed in Sec. III, the fact that the organic semicon-
ductors and oxide gates used in the OFETs of interest are
polar materials means that a carrier in the channel will po-
larize its surroundings. The strength of this long-range Cou-
lomb interaction can be greatly affected when the charge is
near a permanent dipole at a defect site. The difference in
polarization energy can be large enough, even at moderate
dipole strengths, to trap the carrier and will depend on the
polarizabilities of both the organic semiconductor and the
dielectric material.

The trap depth Et as it relates to the difference in polar-
ization energy �Ep between the trapped and free states must
be defined with careful consideration of the timescales in-
volved. The trapped state of the charge is a long-lived state.
Calculation of the polarization energy in this case therefore
requires the static dielectric constant �s for the analytical
solution and the static polarizability �s for the numerical
solution. It is also important to make the appropriate correc-

tions to the polarization energy that take into account the
lattice relaxation energy E�, which is on the order of 0.1 eV.6

For the short-lived transport or transfer states associated with
the free state of the carrier, �� and �� are more appropriate
and the lattice relaxation corrections do not apply. The dif-
ference between the polarization energy of the charge alone
Ep,q in a short-lived state and the polarization energy of the
charge interacting with the dipole trap Ep,q+d in a long-lived
state is then

�Ep = Ep,q���,��� − Ep,q+d��s,�s� , �13�

and the trap depth Et calculated with respect to the edge of
the band is

Et = �Ep + E� − 2J�. �14�

Note that the last term in Eq. �14� is equal to half the renor-
malized bandwidth and accounts for the fact that Ep is mea-
sured from the center of the band. Values of the renormalized
transfer integral J� for holes in rubrene and pentacene that
are based on the fast interaction reduction factors calculated
in this work and bare transfer integral calculations reported
by Bredas et al.25,34 are given in Tables III and IV.

The trap depths due to an interfacial defect dipole in pen-
tacene and rubrene OFETs are plotted in Fig. 4 as a function
of �s for various dipole strengths. Note that for a dipole
moment of a few debye, the trap depth is on the order of a
few hundred meV and increases as a function of �s. This
gives rise to a second contribution to the dependence of the
carrier mobility on �s.

The mobility as a function of the trap concentration and
depth can be determined using the expression of Hoesterey
and Letson,51
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� =
�0�J��

1 + c exp�Et/kBT�
, �15�

where c=�t /� is the relative trap concentration, �t is the
surface trap density, � is the surface density of the organic
semiconductor, and �0 is the trap-free mobility.

As discussed in Sec. III B, the coupling strength between
the charge and the polarization of the gate dielectric is in the
weak to moderate range ���4� and therefore Eq. �1� gives
an accurate description of the trap-free mobility. This means
that the dependence of the mobility on �s can be discussed in
terms of coming from two contributions: effective mass ef-
fects on the trap-free mobility �0�J�� and changes in the trap
depth Et as a function of �s. The effects of trapping alone can
be seen in Fig. 5, which shows the mobility reduction factor
� /�0 for holes in rubrene and pentacene with a trap dipole
of 3.0 D and a trap density of �t=1.8�1012 cm−2, values
that are consistent with the range of expected defect dipole
moments48,49 and reports of �t for rubrene /SiO2 transistors.50

Measurements of the hole mobility in rubrene transistors
reported in Refs. 9 and 14 are plotted as a function of �s in
Fig. 6 with the trap-free and trap-limited mobilities calcu-
lated using the model and the parameters outlined in Tables
III and V. The trap-free mobility is normalized to the mean
experimental value of the rubrene air-gap transistor. De-
creases in hole mobility due to increases in both the effective
mass and the trap depth give rise to a strong decrease in
���s� that is in good agreement with experiment.

C. Trapping or hopping?

While both hopping and trap-and-release mechanisms
may occur in devices that exhibit moderate carrier mobilities,
a temperature-dependent upper bound �max�T� can be placed
on the small-polaron hopping mobility.52 This bound arises
due to the fact that adiabatic hopping is always faster than
nonadiabatic hopping and that the hopping rate reaches a
maximum when the carrier interacts with the highest pos-
sible phonon energy h
 compatible with the hopping process.
This energy is restricted by two conditions that we presented
in Sec. IV A for adiabatic hopping, namely,

h
 � J , �16�

and

h
 � 3kBT . �17�

In rubrene, which has an effective integral of J�=57 meV
�see Ref. 17 and Table III�, the first condition corresponds to
an upper limit of 500 cm−1 for 
. The relevant surface
phonons presented in Table II fulfill this condition �

=390 cm−1 in Ta2O5�.

The upper bound of the mobility can then be calculated
using the following general assumptions. We begin with the
Einstein relation for a nondegenerate carrier gas,

��T� = qD/kBT , �18�

where D is the diffusion coefficient. We assume that, in the
transport channel, the hopping motion is two dimensional, in
which case D=�a2 /4, where � is the hopping rate and a is
the hopping distance. The hopping rate takes the form of the
product of the typical frequency of the phonon assisting the
jump and the probability P to overcome the hopping barrier
via a coincidence state. The upper bound of the mobility is
obtained by assuming that each attempt to pass the barrier in
the forward direction is successful �P=1 /2�, in which case

�max�T� = q
a2/8kBT . �19�

Using a=7.2 Å and 
=500 cm−1, the room-temperature
mobility of small-polaron hopping in rubrene has an upper
bound on the order of 0.4 cm2 /V s. Reports of the mobility
in rubrene single-crystal OFETs are up to two orders of mag-
nitude higher than this value,14 which is consistent with the
difficulties discussed in Sec. IV A of applying the small-
polaron model to this data. In pentacene, �max would be even
lower �0.2 cm2 /V s�.

A plausible way in which the hopping process in an OFET
channel can be made more sensitive to the dielectric re-
sponse of the gate is to introduce more disorder, i.e., to con-
sider energetically nonequivalent sites distributed over larger
distances. This point was already discussed by Veres et al.,
who observed large polarization effects in transistors with
more disordered organic-gate interfaces and transistor mo-
bilities on the order of 10−5 to 10−2 cm2 /V s.53

V. CONCLUSIONS

We studied the effects of polarization on both trap-and-
release and small-polaron hopping transport in organic field-

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

µ/
µ 0

εs

Parylene N

Parylene C

SiO2

Al2O3 Ta2O5

Rubrene

Pentacene

FIG. 5. �Color online� Mobility reduction factor � /�0 due to
trapping effects in the channel of rubrene and pentacene OFETs as
a function of the gate insulator dielectric constant.

0

5

10

15

20

0 5 10 15 20 25

µ
(c

m
2 V

−
1 s−

1 )

εs

Vacuum

Parylene N
Parylene C

SiO2

Al2O3

Ta2O5

µ0

µ

FIG. 6. �Color online� Trap-free mobility �0 and trap-controlled
mobility � as functions of the gate insulator dielectric constant
shown with the ranges of experimental data reported in Refs. 9 and
14.

HOPPING AND TRAPPING MECHANISMS IN ORGANIC… PHYSICAL REVIEW B 81, 045313 �2010�

045313-7



effect transistors and found that a trap-and-release model is a
better description when carrier mobilities are larger than ap-
proximately 0.1 cm2 /V s, while hopping transport can begin
to be observed in OFETs exhibiting mobilities below this
value.

We used a trap-limited transport model for high-mobility
OFETs that includes the important effects of polarization and
interface trapping to explain the experimental observations
of large reductions in the carrier mobility with increasing
static dielectric constant of the gate insulator �s.

We also calculated the trap depth of the interface defects
that exist in typical OFETs using rubrene and pentacene tran-
sistors with various dielectric materials as examples. The dif-
ference in polarization energy between trapped and free
states constitutes a large contribution to the trap depth that is
dependent on �s. The combination of both the trap-free mo-
bility and the interface trap depth being functions of �s gives
rise to a trap-controlled mobility that rapidly decreases with
increasing �s. Estimates of the carrier mobility in rubrene
transistors for various dielectric materials are in good agree-
ment with experimental data.
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APPENDIX A: POLARIZATION ENERGY CALCULATIONS

The calculations of the polarization energy we used to
determine the effects of polarization on the charge transport
mechanisms in rubrene and pentacene were performed using
the self-consistent polarization field method.6 With this
method all electrostatic interactions are explicitly taken into
account within a finite region � containing the charge using
the polarizability tensors and crystal structures of the sur-
rounding polarizable media. An iterative procedure is used to
calculate the induced dipole on each of the molecules within
the region � due to: �i� the electric field E1 of the charge and,
in the case of a trapped carrier, the permanent dipole of the
proximate interface defect and �ii� the self-consistent field of
the other induced dipoles.

In the channel of an OFET, the electric field for a charge
q located at xq that is trapped by an interface defect dipole dt
located at xt is

E1�x� =
1

4
�0
�q

x − xq

�x − xq�3
−

dt

�x − xt�3
+ 3�x − xt�

dt · �x − xt�
�x − xt�5


 .

�A1�

The contribution of the polarization energy within the self-
consistency region can be expressed in terms of the induced
dipoles in the following way:

Eint = −
q

4
�0

�xt − xq� · dt

�xt − xq�3
− �

i
	E1�xi� · di − �

k=1

3
�di,k�2

2�i,kk

−
1

4
�0
�
j�i
� di · d j

�xi − x j�3
− 3di · �xi − x j�

d j · �xi − x j�
�xi − x j�5



 ,

�A2�

where the position and induced dipole moment of the mol-

ecule with index i are denoted by xi and di, respectively. For
the summation over the index i, which like j includes all
organic semiconductor and gate dielectric molecules, only
the first term in Eq. �A1� is used when xi=xt and the electric
field E1 is zero when xi=xq. The first term in Eq. �A2� is the
charge-dipole interaction between the point charge and the
permanent dipole of the trap. The remaining terms are the
charge-dipole interactions, self-energies, and dipole-dipole
interactions of the induced dipoles. As an example result of
the numerical procedure, Fig. 7 shows some of the induced
dipoles in a single-crystal rubrene channel due to a hole that
has been trapped by a SiO2 surface defect with a dipole
strength of 2.0D. For a free carrier, Eint is calculated using
the same procedure with all terms containing xt removed
from Eqs. �A1� and �A2�.

Outside the self-consistency region, the remaining contri-
bution of the polarization energy Eext is estimated analyti-
cally using the macroscopic approximation that the dielectric
constants of the media are isotropic. The isotropic dielectric
constants reported in the literature for the gate dielectrics
studied in this work are listed in Table II. The relevant gate
insulator dielectric constant ��s or ��� to be used in the cal-
culation is determined by the timescale of the mechanism
involved �see Sec. IV�. We assumed that the static and dy-
namic dielectric constants in the organic semiconductor are
identical and determined effective values based on reported
anisotropic refractive indices in rubrene56 and anisotropic di-
electric tensor components in pentacene.20 The effective di-
electric constant �r of the organic semiconductor can be de-
termined by the relation:57

�r =
��2��3 − �1�

F	arctan��3 − �1

�1
,��3��2 − �1�

�2��3 − �1�

 , �A3�

where F is the elliptic integral of the first kind and �i are the
principal components of the organic semiconductor dielectric
tensor such that �1��2��3.

For accurate determination of the total polarization energy
Ep, the microscopic molecular polarizability of the numerical
solution inside � must be calibrated with respect to the mac-
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FIG. 7. �Color online� Hole trapped by an SiO2 interface defect
with a dipole moment of 2.0 D. The induced dipoles in rubrene �z
�0� are shown for the first two monolayers adjacent to the interface
located at z=0. For clarity, the strength of the dipoles in the region
z�0 is magnified by a factor of 5 relative to those in rubrene.
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roscopic dielectric constant of the analytical solution outside
�. This is achieved by adjusting the polarizability such that
Ep=Eint+Eext is independent of the size of the self-
consistency region for large �. To determine the polarization
energy of a charge in proximity to a dielectric interface, it is
convenient to use a cylindrical self-consistency region. It is
worth noting that although Eq. �A3� was derived for the case
in which � is a sphere,57 we find calibrated polarizabilities
and bulk polarization energies using a cylinder with radius R
and height 2R that are identical to the results using a sphere
within the sensitivity of the calculation.

The analytical component of the polarization energy of a
trapped carrier is the solution to a boundary value problem
that considers the dielectric discontinuity at the organic-
dielectric interface and the resulting image charges. For a
charge in the organic semiconductor located at located at x
=aẑ, a permanent dipole due to a defect in the gate dielectric
centered at x=−bẑ, and an organic-dielectric interface at the
z=0 plane, the polarization energy in cylindrical coordinates
is

Eext = − 
�0� � �� − 1�E0�x� · E�x�rdrdz , �A4�

where

� = ��r, z � 0

�s, z � 0
� . �A5�

The electric field of the charge and dipole in vacuum is

E0�x� =
q

4
�0
� rr̂ + �z + b + c�ẑ

�++
3 −

rr̂ + �z + b − c�ẑ
�+−

3

+
rr̂ + �z − a�ẑ

�−
3 
 . �A6�

Note that we have assumed that the field is evaluated at a
great enough distance so that the permanent dipole of the
interface defect with strength �D can be treated as two
charges separated by a distance of 2c=�D /q. This assump-
tion is valid for our results because c is at least two orders of
magnitude smaller than �x� for dipole strengths of a few de-
bye and the sizes of � used.

The field in the dielectric media can be defined as

E�x� = �E+�x� , z � 0

E−�x� , z � 0
� , �A7�

where E+�x� and E−�x�, given below, are the fields above and
below the dielectric discontinuity, respectively. In the organic
semiconductor, the electric field is

E+�x� =
q

4
�r�0
�	�r − �s

�r + �s

 rr̂ + �z + a�ẑ

�+
3 + 	 2�r

�r + �s



�� rr̂ + �z + b + c�ẑ
�++

3 −
rr̂ + �z + b − c�ẑ

�+−
3 


+
rr̂ + �z − a�ẑ

�−
3 � , �A8�

where

�� = �r2 + �z � a�2, �A9�

and

��� = �r2 + �z � b � c�2. �A10�

In the gate dielectric, the field is

E−�x� =
q

4
�s�0
�	 2�s

�s + �r

 rr̂ + �z − a�ẑ

�−
3 + 	�s − �r

�s + �r



�� rr̂ + �z − b − c�ẑ
�−−

3 −
rr̂ + �z − b + c�ẑ

�−+
3 


−
rr̂ + �z + b + c�ẑ

�++
3 +

rr̂ + �z − b + c�ẑ
�−+

3 � . �A11�

For calculations of the polarization energy of a free carrier,
the same analytical expressions above are used except that
all terms containing b are removed and �s is replaced by ��.

Fig. 8 shows the polarization energies of a hole in bulk
rubrene and pentacene as functions of R for the calibrated
values of the organic semiconductor polarizabilities given in
Table V. As in all calculations of Ep, �p, and Et presented in
this work, the height of the cylindrical self-consistency re-
gion is equal to 2R. The variation in the polarization energy
is less than 0.3 meV for R�60 Å. Based on these results,
dimensions of � for calculations of �p and Et were chosen
such that R�60 Å. For calculations of �p in bulk rubrene
and bulk pentacene, for example, a cylinder height equal to
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nine monolayers of the organic semiconductor was chosen.
A similar calibration technique was used to determine the

isotropic polarizability for the gate dielectric molecules in a
simple cubic geometry as a function of the dielectric con-
stant. Results of this calibration for the static and dynamic
dielectric constants relevant to the gate insulators studied are
presented in Table II.

APPENDIX B: THE FRÖHLICH SURFACE POLARON

When a charge carrier is generated by the field effect at
the interface between a molecular semiconductor and a gate
insulator, it interacts with the surface phonons of the dielec-
tric. This effect has been studied in Ref. 33 for an isotropic
three-dimensional molecular crystal in the adiabatic limit.
Here, we consider this interaction in the case of a crystal in
which the carrier motion is essentially two dimensional and
the electron-phonon coupling is moderate.

The electron-phonon interaction involving a charge in a
particular monolayer of the crystal at a distance z�0 from
the interface is given by15

He−ph = �
k

q
�k
�
	�s

S�� �
n

e−kzeik·na�bk + b−k
+ ���n�2,

�B1�

where ��n�2 is the charge density at site na= �nxa ,nya�, bk
and b−k

+ are the annihilation and creation operators of the
surface phonons in the gate dielectric, �s is the surface pho-
non frequency, and S is the surface area of the interface. The
total Hamiltonian is then

H = − J�a2 p2

	2 + �
k

	�sbk
+bk + He−ph, �B2�

where p is the charge carrier momentum. Following Ref. 33,
we introduce the total momentum of the system, which is a
constant of motion in the total Hamiltonian,

P = �
k

	kbk
+bk + p . �B3�

The total Hamiltonian can be transformed from H to H�

through the unitary transformation Ŝ so that H� no longer
contains the charge coordinates,

H� = Ŝ−1HŜ , �B4�

with

Ŝ = exp�i	P − �
k

bk
+bkk
 · na
 . �B5�

We therefore obtain

H� = �
k

	�sbk
+bk + �

k

Vk�z��bk + b−k
+ ��P/	 − �

k

bk
+bkk
J�a

+ �P/	 − �
k

bk
+bk
J�a2, �B6�

where

Vk�z� =
q

�k
�
	�s

S��
e−kz. �B7�

Since the phonon frequency 	�s is comparable to the ef-
fective transfer integral J�, the adiabatic approximation is not
applicable. However, in our case, the dimensionless param-
eter �eff, which describes the strength of the electron-phonon
coupling and decreases as a function of the distance z to the
interface as

�eff =
q2

8
�0��z
� �

a

z
, �B8�

is on the order of 1 for a charge carrier located in the first
monolayer.

We then use a variational method to describe the interac-
tion of the dressed charge carrier with the dielectric
phonons.33 Introducing a second unitary transformation,

Û = exp	�
k

bk
+fk − bkfk

�
 , �B9�

where fk is chosen to minimize the energy,

E =
P2

	
a2J� + �

k

�Vkfk − Vk
�fk

�� + J�	�
k

�fk�2k2a2
2

+ �
k

�fk�2�	�s + J�	k2a2 − 2
k · P

	2 a2

 , �B10�

we then find

fk = −
Vk

�

	�s + J�
�k2a2 − 2

k · P

	
a2�1 − ��
 , �B11�

where � satisfies the implicit equation,

�P =
�k�Vk�2	k

	�s + J��k2a2 − 2k · P�1 − ��a2/	�
. �B12�

The carrier binding energy is Eb=−�I1�z�	�s and the ef-
fective mass is m� /m=J� /J�=1+2�I2�z�. As long as

TABLE V. Organic semiconductor parameters used in the
model. Crystal lattice and molecular orientation constants and di-
electric tensor principal components were obtained from the litera-
ture. The effective dielectric constants �r were determined using Eq.
�A3� and the calibration procedure for obtaining the anisotropic
polarizability components �ii is outlined in Sec. IV B of the text.

Rubrene Pentacene

a ,b ,c�Å� 7.193, 14.433, 26.86b 7.9, 6.06, 16.01c

� ,� ,��°� 90, 90, 90 101.9, 112.6, 85.8c

�a ,�b ,�c 2.3, 2.6, 3.1d 5.336, 3.211, 2.413a

�r 2.62 3.58

�11,�22,�22�Å3� 54.48, 43.55, 35.90 33.18, 23.03, 14.27

aReference 20.
bReference 54.
cReference 55.
dReference 56.
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J�P2a2 /	2 is small ��	�s�, we may obtain E�P2� to first
order in an expansion of powers of �J� /	�s��P2a2 /	2�. In
doing so, one readily gets

E = − �I1�z�	�s +
P2a2

	2

J�

�1 + 2�I2�z��
, �B13�

where

I1�z� = �
0


�J�/	�s 1

1 + y2exp	−
2yz

a
�	�s

J�

dy , �B14�

and

I2�z� = �
0


�J�/	�s y2

�1 + y2�3exp	−
2yz

a
�	�s

J�

dy .

�B15�
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